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Quantum version of free-energy–irreversible-work relations
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We give a quantum version of the Jarzynski relation between the distribution of work done over a certain
time-interval on a system and the difference of equilibrium free energies. The main ingredient is the identifi-
cation of work depending on the quantum history of the system and the proper definition of various quantum
ensembles over which the averages should be made. We also discuss a number of different regimes that have
been considered by other authors and which are unified in the present set-up. In all cases, quantum or classical,
it is a general relation between heat and time-reversal that makes the Jarzynski relation so universally valid.
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I. INTRODUCTION

Thermodynamic potentials such as the Helmholtz free
ergy are crucial in applications of thermodynamics. Th
give insight in what processes area priori workable, with
what effects and under what circumstances. Basically on
interested in two types of information. One is the express
of these potentials as a function of system parameters.
determines the thermodynamic landscape and it yields
thermodynamic forces. A second type of information co
cerns the mutual relation between these potentials and
link with available work and entropy-energy transformation
For example, for a system that can extract heat from an
vironment at constant temperatureT, the energy that is avail
able to do work is exactly the free energyF[V2TS, that is
its energyV minus the heat termTS whereS is the entropy
of the system. Furthermore, to study its equilibrium prop
ties we should maximize the total entropy~of system and
reservoir! for given energy contents but that again is equiv
lent with minimizing the free energy at fixed temperature

If, as often happens, no very reliable computation of
free energy landscape can be made, the above provides
mediate rescue. It suffices to measure the work done u
isothermal conditions in changing the parameters of the
tem and it will be equal to the free energy difference. Th
however, is only valid if the thermodynamic process
volved is quasistatic. In other words, the changes mus
done very slowly, a situation that cannot be hoped for
many cases. It was therefore very useful that an exten
relation between free energy and work was proposed
exploited in a series of papers since the pioneering work
Jarzynski in 1997@1#. That relation looks as follows:

e2bDF5^e2bW&. ~1.1!

In the left-hand sideDF is what we want to know, the dif-
ference in free energies between two equilibria with para
eter valuesk f andk i . The right-hand side is an average ov
all possible paths that take the system in equilibrium fo
certain parameter valuek i in its initial Hamiltonian to a state
where that parameter is changed intok f . The work doneW
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depends on the path if the process is not adiabatic~i.e., with-
out heat transfer! or if it is not quasistatic. The protocol, i.e
the sequence of forcing in the time-dependent Hamiltoni
is always kept fixed.

Derivations of the Jarzynski relation~1.1! have been
made in various ways and in various approximations,
Refs.@1–8#. From such a relation free energy differences c
be measured even in situations where the process of ch
ing the parameters is not so well controlled. That has alre
been experimentally realized in, e.g., molecular syste
@9–11#.

A natural extension of Eq.~1.1! concerns the quantum
regime. That appears possibly important and relevant w
the system in question should be treated with the method
quantum mechanics. In nanodevices the interplay betw
nanomechanics and thermodynamics becomes all impor
Yet, a more fundamental reason to be interested in a quan
version of Eq.~1.1! is the question that it poses on the qua
tum nature of path dependence. We enter here the doma
quantum mechanics on histories. It isa priori not clear how
to define quantum mechanical work that depends on a p
that the system has followed. In the present paper we de
a quantum extension of Eq.~1.1! where we explicitly deal
with that path dependence and where we start from a ti
dependent unitary evolution on the level of the system p
environment.

II. PREVIOUS RESULTS

Various proposals for quantum extensions of the Jarzyn
relation have appeared in the literature. We briefly bring
some aspects of such studies.

In Ref. @12# and following Ref.@13# one introduces the
probabilities

pa,a8[
e2bVa

Z~b!
u^wa8

8 uUuwa&u2 ~2.1!

that the system is found in theath eigenstatewa of the
HamiltonianH at an initial time~when the system is in ther
mal equilibrium at inverse temperatureb) and then is found
in the a8th eigenstatewa8

8 of the HamiltonianH8 at a later
time. The operatorU in Eq. ~2.1! is the unitary operator for
©2004 The American Physical Society15-1
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the time inhomogeneous evolution during the whole peri
It is then an easy computation, done in Ref.@12#:

( pa,a8exp@bVa2bVa8
8 #5

Z8~b!

Z~b!
. ~2.2!

This resembles Eq.~1.1! except for the important fact tha
the left-hand side averages over an exponential of a tota~in
time! energy difference. In particular there is no concept h
of a path-dependent work. One interpretation is that the s
tem in question is here really the total system~subsystem1
heat bath! and one should follow the change in energy ov
the whole system. We think, however, that it is more use
to have a representation of work in terms of the coordina
~and history! of the subsystem only. After all, that is wha
free energies are all about thermodynamically. A second
terpretation is that one thinks of the unitary evolution
working entirely on the subsystem itself and the heat bat
completely absent except for the inverse temperatureb. That
can be called the adiabatic regime and we return to it in S
IV C 1.

The presentation in Ref.@14# contains analogies both wit
what was described in Ref.@6# and with the adiabatic treat
ment of Ref.@12#. In Ref. @6# a derivation of Eq.~1.1! was
given based on a time-inhomogeneous Markov proc
which satisfies, at each time, the detailed balance relation
some energy function. That can be lifted to the quant
regime when the Markov process is seen as an effective
scription of a quantum system in contact with a heat ba
For example, the quantum weak coupling limit exactly rep
duces theclassicalMarkov process as dynamics for the sy
tem when in the energy basis for the system Hamiltonian
that precise sense Ref.@6# was the first quantum extension o
the Jarzynski relation. Here one deals with an effective
namics of the subsystem and we turn to it in Sec. IV A.

Finally, in Ref. @15# the question of path dependence
the work is analyzed in an operator setting and it is poin
out that various ambiguities remain in the ordering of t
operators. These ambiguities only seem to disappear
quasistatic limit which, unfortunately, is exactly the regim
we are less interested in. While it is in principle possible
define a work operator for the total system, the question
that setting remains whether its projection on the subsys
remains useful and its spectrum measurable.

In the present paper we deal with a unitary evolution o
the total system, subsystem plus reservoir, and we dea
plicitly with a path-dependent work. That is new, but t
reason that the Jarzynski relation~1.1! is so universally valid
remains the same as for classical systems. The basic o
vation is that the entropy production can be identified w
the source of time-reversal breaking in the action govern
the distribution of system histories, see Ref.@7,16,17#. We
briefly state that point here in a formal way to refer to it la
when things become more explicit.

We take the dynamics time dependent through wh
work W is done on the system over a time period while
contact with a heat bath at constant inverse temperaturb.
The time-dependent dynamics starts with an energy func
Vi and at timen the energy function is given byVf . Let
02611
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q(v,r i) denote the probability of a history (v t)0
n ~on a cer-

tain level of description! of the system started in the stater i
at time zero. We chooser i5exp@2bVi#/Zi . We now reverse
the protocol~the sequence of forcing! and letq̃(v,r f)) de-
note the probability of the historyv when started inr f at
time zero. We chooser f5exp@2bVf#/Zf for the same tem-
perature but with a different energy function. For the pro
ability of the time-reversed trajectoryQv[(vn2t)0

n , we

then writeq̃(Qv,r f). Introducing the actionL, we have

q~v,r!5r~v0!e2L(v),
q̃~Qv,r f !

q~v,r i !
5e2R(v) ~2.3!

with

R~v![ ln r i~v0!2 ln r f~vn!1L̃~Qv!2L~v!.

Then,

ln r i~v f !2 ln r f~vn!5b@Vf~vn!2Vi~v0!#2bDF,

DF[2
1

b
ln

Zf

Zi
.

The change in energyVf(vn)2Vi(v0) equals the workW
minus the heatQ that flows into the bath. On the other han
it can be argued that the source term of time-symme
breakingL̃(Qv)2L(v) equals the entropy productionbQ,
see Ref.@7#. Hence, we get from Eq.~2.3! that

q̃~Qv,r f !

q~v,r i !
5e2bW(v)1bDF.

But, by normalization, multiplying the above relation wit
q(v,r i) and summing over allv gives 1; hence Eq.~1.1! is
obtained.

What remains to be done is to give a quantum express
for the above quantities and that is the subject of the pre
paper. In other words, we want to obtain an algorithm, va
for a system subject to the laws of quantum mechan
through which we can measure the difference in equilibri
free energies. Moreover, we want this algorithm to be form
lated on the level of the subsystem. That means that we m
trace out the heat bath from the equality Eq.~2.2!.

III. FORMULATION OF THE PROBLEM

We model a possibly small quantum system in cont
with a much larger heat reservoir kept at fixed inverse te
peratureb. The Hilbert space of the subsystem is denoted
HS and that of the environment byHR ; both are assumed
finite dimensional. As usual the total real and self-adjo
Hamiltonian is a sum of three contributions,

Ht5Ht
S1HR1gHI , ~3.1!

where the system partHt
S is parameterized by t

50,1, . . . ,n and acts onHS . The Hamiltonian of the reser
voir HR ~acting onHR) and the couplingHI between system
5-2
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and reservoir are assumed fixed. We will not need any
plicit description of these terms. Settingg50 decouples sys
tem and reservoir. The canonical density matrices describ
equilibrium for the decoupled system are

r t[
1

Zt
e2bHt

S
^

1

ZR
e2bHR

. ~3.2!

We are interested in the difference of Helmholtz free en
gies

DF[2
1

b
ln

Zn

Z0
. ~3.3!

The dynamics for the total system is unitary and time dep
dent with unitary operator

Ut5eilHt

acting onHS^ HR . The parameterl is real and sets the
energy-time scale.

While the left-hand side of Eq.~1.1! is clear and given by
Eq. ~3.3! the question is about the quantum version of
right-hand side: What is averaging and what is the wo
Different reduced dynamics for the subsystem can be im
ined that are relevant in different types of regimes.

IV. RESULTS

A. Effective regime

Here we suppose that the dynamics for the subsyste
described via some effective dynamics. There are vari
candidates but one class of examples is obtained as the q
tum analog of a Markov process onHS . These can be rig-
orously obtained under various conditions and in vario
limiting regimes. Following Ref.@18#, one can start with a
time-dependent HamiltonianHt and take the weak couplin
limit. Obviously the driving protocol has to vary on the sam
time scale as the dissipation processes through contact
the reservoir. What results is a time-inhomogeneous Mar
process such that the instantaneous generator at timet satis-
fies detailed balance with respect toH(t). One way to imple-
ment that is to think of a sequencewaO

0 →wa1

0 →wa1

1 →wa2

1

→•••→wan21

n21 →wan

n21→wan

n where, alternating in time, the

transition is either thermal as forwa t

t →wa t11

t and is modeled

by a completely positive mapL t which satisfies the condi

tion of detailed balance with respect tor t[e2bHt
S
/Zt ,

Tr @Pa t

t L t~Pa t21

t !#

Tr @Pa t21

t L t~Pa t

t !#
5exp@2b~Va t

t 2Va t21

t !# ~4.1!

or is mechanical as forwa t

t →wa t

t11. The last transition is

imagined instantaneously performed so that we define
probability of a trajectoryv as the product
02611
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D~v![Tr @Pan

n Ln~Pan21

n !#Tr@Pan21

n21 Ln21~Pan22

n21 !#•••

Tr @Pa1

1 L1~Pa0

1 !#
e2bVa0

0

Z0
. ~4.2!

In this setup, the heat bath enters via the mapL t and the
inverse temperaatureb. Expectations will be denoted by
^•&D . The total change in energy isDV[Van

n 2Va0

0 and the

total heat that flows in the heat bath in the thermal transiti
~4.1! is

Q~v![2(
t51

n

~Va t

t 2Va t21

t !. ~4.3!

The total work is therefore defined as

W~v![Q~v!1DV5 (
t50

n21

~Va t

t112Va t

t ! ~4.4!

and is done over the transitionswa t

t →wa t

t11. We then have

^e2bW&D5e2bDF. ~4.5!

The simplest way to prove Eq.~4.5! is to use the relation
between entropy production and time reversal as in R
@6,7,16,17#. Let Qv[(an , . . . ,a0) be the time-reversed
trajectory. Similar to Eq.~4.2! we define a path-space me
sure starting fromrn :

q̃b
D~Qv![Tr @Pa0

1 L1~Pa1

1 !# . . . Tr@Pan21

n Ln~Pan

n !#
e2bVan

n

Zn
~4.6!

and compute the ratio

qb
D~v!

q̃b
D~Qv!

5eb(Van

n
2Va0

0 )
Zn

Z0

Tr @Pan

n Ln~Pan21

n !#

Tr@Pan21

n Ln~Pan

n !#
. . .

Tr @Pa1

1 L1~Pa0

1 !#

Tr @Pa0

1 L1~Pa1

1 !#
.

By using detailed balance Eq.~4.1! at every time step and th
definitions~4.3! and ~4.4!, one arrives at

qb
D~v!

q̃b
D~Qv!

5ebDV2bDF1bQ5ebW2bDF.

We apply to that relation the normalization condition

(
v

qb
D~v!

q̃b
D~Qv!

qb
D~v!

51

to conclude Eq.~4.5!. The proof above mimics exactly th
scenario of Eq.~2.3!. The result is the very analog of th
main identity by Crooks in Ref.@6# but where the transition
rates in Eq.~4.2! have a quantum mechanical expression.
5-3
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B. Repeated measurements

We come back to the set up of Eqs.~3.1! and ~3.2!. As-
sume that eachHt

S is nondegenerate and has projectionsPa
t

on its eigenstateswa
t with eigenstatesVa

t . A trajectory or
path for the subsystem is a sequence (a0 , . . . ,an) where
each a t runs over the possible eigenstates ofHt

S ,t
50, . . . ,n. We now give a probability measure on such tr
jectories which is obtained by tracing out the quantum m
chanical probabilities for the whole system.

Let PE denote the projection on the energy space inHR
for the reservoir HamiltonianHR with energyE. The prob-
ability to find the total system initially in equilibrium for Eq
~3.2! and at later times in eigenstateswa t

t for the system and

with energiesEt for the reservoir is given by

pb~a0 , . . . ,an ;E0 , . . . ,En![Tr @Gr0G!# ~4.7!

with G[Pan

n
^ PEn

Un . . . Pa1

1
^ PE1

U1Pa0

0
^ PE0

.

When viewed from the subsystem, the probability for traje
tory v5(a0 , . . . ,an) is thus@let e[(E0 , . . . ,En)]

qb~v![(
e

pb~a0 , . . . ,an ;e! ~4.8!

and when conditioned onv, Eq. ~4.7! gives expectations
denoted as

^g&~v![
1

qb~v! (
e

g~v,e!pb~v;e! ~4.9!

whenqb(v) is nonzero. Finally, the expectations in the pa
space measure~4.8! are written as

^ f &[(
v

f ~v!qb~v!. ~4.10!

The change in energy for the subsystem correspondin
the pathv is Van

n 2Va0

0 whereVa
t is the energy ofwa

t . We

define a path-dependent work by the formula

W~v![Van

n 2Va0

0 2
1

b
ln^e2b(En2E0)&~v!. ~4.11!

The interpretation follows the first law of thermodynam
ics. To change the parameters in the HamiltonianHt

S isother-
mally some heat must flow from the bath into the syste
That is the second term in Eq.~4.11!. We can expect that the
heat bath is dispersionfree with respect to the subsystem
the sense that through each stepwa t

t →wa t11

t11 of the trajectory

v, the corresponding change in energiesEt112Et of the
reservoir is determined:

2
1

b
ln^e2b(En2E0)&~v!.^En2E0&~v!. ~4.12!
02611
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That gives the heatQ flowing into the reservoir. At the sam
time the energy in the subsystem changes, the first term
Eq. ~4.11!. Combined, Eq.~4.11! gives the work performed
on the subsystem.

For Eqs.~4.7!–~4.11!,

e2bDF5^e2bW&. ~4.13!

That means that the Jarzynski relation~1.1! is unaffected in
the quantum regime when, in the averaging, the quan
mechanical probabilities are used. We will now verify E
~4.13!.

We apply again the ideas around Eq.~2.3!. We define the
time-reversed path-space measure from Eq.~4.7! by revers-
ing the order in which the time-dependent dynamics is
plied and by now starting from the density matrixrn of Eq.
~3.2!:

p̃b~a0 , . . . ,an ;E0 , . . . ,En![Tr @G̃rnG̃!# ~4.14!

with

G̃[Pan

n
^ PEn

U1! . . . Pa1

1
^ PE1

Un
!Pa0

0
^ PE0

.

It follows immediately that

p̃b~Qv;Qe!5pb~v;e!e2b(Van

n
2Va0

0
1En2E0)

Z0

Zn
~4.15!

and hence

^e2bW&5(
v

qb~v!eb(Va0

0
2V

n

an)^e2b(En2E0)&~v!

5(
v,e

pb~v,e!eb(Va0

0
2Van

n )e2b(En2E0)

5
Zn

Z0
(
v,e

p̃b~Qv,Qe!

5e2bDF ~4.16!

as required.
The repeated measurements introduce another aspe

randomness in the distribution of work which is absent cl
sically. Unless one is taking an effective dynamics like
Sec. IV A, one will always need to take care of that aspec
define in any useful way what is meant by work that depe
on the history of the subsystem.

C. Special cases

There are a number of special cases that we treat s
rately.

1. Adiabatic regime

We consider only the subsystem that was initially broug
in thermal equilibrium at inverse temperatureb and that
from time zero on is isolated from the environment. We ta
5-4
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thus the same setup as in Sec. III except that we cut
coupling with the reservoir. The initial density matrix is

r0[
1

Z0
e2bH0

S

and the dynamics is unitary onHS and here denoted byUt
S

with t50,1, . . . ,n changing as time proceeds.Ut
S need not

commute withHt
S . Instead of Eq.~4.8! we now take the

probability of trajectoryv5(a0 , . . . ,an) to be

qb
S~v![Tr @Pan

n Un
S . . . Pa1

1 U1
SPa0

0 r0

3~Pan

n Un
S . . . Pa1

1 U1
SPa0

0 !!# ~4.17!

with expectationŝ •&S . For v the change in energy of th
subsystem isVn2V0 as was the first term in Eq.~4.11!. Then

^eb(Va0

0
2Van

n )&S5e2bDF. ~4.18!

That identity is the generalization of Eq.~2.7! in Ref.
@12#. Note that Eq.~4.18! is true for an arbitrary family of
unitary operators defining the time evolution. It can be o
tained from the following exact identity. LetG be an opera-
tor on HS and write Tr@G Pa

n #[G(a). Then, as one easily
checks,

(
v

G~an!ebVa0

0
Tr@Pan

n Ln21

3~ . . . Pa1

1 ~L1~Pa0

0 r0Pa0

0 !!Pa1

1 . . . !#5
Tr @G#

Z

~4.19!

for all super-operatorsL t ~acting linearly on density matri
ces! that leave the identity invariant,L t(1)51.

One can generalize Eqs.~4.17! and ~4.18! by choosing
here

L t~A!5(
r

m r
t Ur

SAUr
S!

with m r
t >0 and ( rm r

t 51, meaning that the unitaryUr
S is

employed with probabilitym r
t at time t. TheseL ’s leave the

identity invariant, so Eq.~4.19! applies and

(
v

qb
e~v!eb(Va0

0
2Van

n )5e2bDF ~4.20!
02611
e

-

just as in Eqs.~4.17!–~4.18! but now with probabilities

qb
e~v![Tr @Pan

n Ln21~ . . . Pa1

1 ~L1~Pa0

0 r0Pa0

0 !!Pa1

1 . . . !#.

Of course, if g in Eq. ~3.1! is zero, thenUt5Ut
S

^ UR

factorizes and the treatment of Secs. IV A and IV B reduc
to the adiabatic case. The work is a difference of energ
~instead of a path-dependent quantity! and there is no hea
(Q50).

2. Quasistatic regime

We imagine then that the evolutionsUt are slow enough
so that the system plus reservoirs relax into an equilibri
state with respect toHt .

We think about the case of Sec. IV B. Always,

pb~v,e!5qb~v!qb~euv! ~4.21!

but in the quasistatic regime we have

pb~a t ,Et!5qb~a t!qb~Etua t!, ~4.22!

which suffices to see that^e2b(En2E0)&(v) depends only on
(v0 ,vn). Again, there is no path dependence in the workW.

3. No time-dependence

Suppose that Eq.~3.1! does not contain a parameter d
pendence and that the time evolution is homogeneousUt
[U).

Then of courseDF50. For the effective Markovian dy-
namics of Sec. IV A, one sees immediately thatW(v)50 for
eachv in Eq. ~4.4!. In the adiabatic case of Sec. IV C a
well, Va0

0 2Van

n 50 with qb
S—probability 1 when we ask tha

in Eq. ~4.17! the projectionsPa t

t and the unitary evolutions

mutually commute. In the case of Sec. IV B, we can u
conservation of energyVa i

i 1Ei5 constant, as in the first law

~4.11!, when we ignore the~boundary! interaction termHI in
the energy balance. In that case we again getW(v)50.
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